![]() Power transmission system for working machine
专利摘要:
A power transmission system for a working machine, wherein drive power is transmitted from an engine to a work-tool holding drive shaft via a reduction mechanism is provided. The reduction mechanism includes an input shaft having a first gear, and an output shaft having a second gear. The second gear has a gear portion and a cylindrical boss segment press fitted thereto, forming a torque limiter. As a result, the reduction mechanism, which has the torque limiter, has a simplified structure, enabling easy assemblage. 公开号:US20010009078A1 申请号:US09/757,410 申请日:2001-01-09 公开日:2001-07-26 发明作者:Yoshitaka Ohta;Tomoaki Ishikawa 申请人:Honda Motor Co Ltd; IPC主号:F16D7-02
专利说明:
[0001] 1. Field of the Invention [0001] [0002] This invention relates to power transmission systems for working machines such as a snow removing machine and a power tiller and, more particularly, to an improvement over a torque limiter of such power transmission systems. [0002] [0003] 2. Description of the Related Art [0003] [0004] An auger type snow removing machine is of the type wherein a spiral blade, known as an auger, collects snow and the collected snow is delivered to a blower for discharge. The auger is driven by an engine or electric motor (hereinafter referred to as a prime mover) via a power transmission system. When operating the auger, the auger tends to bite a lump of ice or stones (hereinafter referred to as foreign matters) and the power transmission system suffers from an overload, resulting in damages to the power transmission system. To solve this problem, it has heretofore been proposed to provide a torque limiter in the power transmission system so as to permit slippage in the power transmission system when it is subjected to a torque beyond a given level. One of these examples is disclosed in Japanese Utility Model Laid-Open Publication No. HEI-2-112715. [0004] [0005] The auger type snow removing machine usually includes an input shaft driven by the prime mover and an auger drive shaft to which drive power is transmitted from the prime mover through a power transmitting mechanism. The torque limiter forming part of the power transmitting mechanism includes a worm wheel located at a central portion of the auger drive shaft. The central portion of the auger drive shaft has an outer periphery treated with sulphurizing or carburizing processes such that when the auger drive shaft is subjected to the overload, the worm wheel tends to rotate in an idling condition relative to the auger drive shaft. [0005] [0006] The torque limiter includes the worm wheel and auger drive shaft which are assembled by initially accommodating the worm wheel in a gear case and subsequently press fitting the auger drive shaft to the worm wheel. This assembling method is disadvantageous in that the worm wheel is firmly retained to bear the auger drive shaft that is press fitted to the worm wheel, providing a difficult assembling process. To solve this problem, it has been the usual practice to employ an improved assembling process wherein the worm wheel is initially press fitted to the auger drive shaft to provide a unitary structure and subsequently the unitary structure is placed in the gear case. However, this assembling process requires that the gear case be divided into two halves on a line perpendicular to the auger drive shaft, resulting in a structurally complicated gear case. [0006] [0007] Japanese Utility Model Laid-Open Publication No. SHO-58-157029 discloses a clutch mechanism suited for use on a small-sized tiller wherein an engine output shaft is connected to a drive shaft via a clutch. Owing to the clutch mechanism, a clutch housing and the engine are located at a low level near the ground such that the small-sized tiller has a lowered center of gravity. The clutch mechanism also has an overload protection function. That is, the clutch mechanism includes a spring, the force of which is adjusted to a desired value to provide the overload protection function. A technique employing a spring to effect overload protection is disclosed in Japanese Utility Model Post-Exam Publication No. SHO-39-4607 entitled “Tilling Shaft Load Control Device for Tiller” wherein a load control device is employed to prevent tilling craws of the tiller from being ruptured. [0007] [0008] In the clutch mechanism of Japanese Utility Model Laid-Open Publication No. SHO-58-157029, the clutch is complicated in structure and hence a torque limiter becomes complicated in structure. Being comprised of the clutch, a clutch release arm and an arm shaft, the clutch mechanism is large in size. Thus, the whole arrangement for accommodating the clutch mechanism is made large sized in lateral direction and has an increased weight, thereby deteriorating maneuverability of the tiller. [0008] SUMMARY OF THE INVENTION [0009] It is therefore a first object of the present invention to provide a power transmission system for a working machine having a torque limiter which is easy to assemble. [0009] [0010] Another object of the present invention is to provide a power transmission system for a working machine having a torque limiter which is simple in structure, small in lateral direction and light in weight. [0010] [0011] According to an aspect of the present invention, there is provided a power transmission system for a working machine, wherein drive power is transmitted from a prime mover to a work-tool holding drive shaft via a reduction mechanism for driving working members mounted on the drive shaft in its working condition. The reduction mechanism includes an input shaft, a first gear mounted on the input shaft, an output shaft, a second gear mounted on the output shaft and meshing with the first gear, and a gear case for accommodating the first and second gears. The second gear includes a torque limiter composed of a gear portion and a cylindrical boss segment press fitted to the gear portion. [0011] [0012] The second gear of the reduction mechanism forms part of the torque limiter wherein the cylindrical boss segment is press fitted to the gear portion and, the reduction mechanism employing the torque limiter is simple in structure, easy to assemble, short in assembling time and low in manufacturing cost. Since the torque limiter has a lateral dimension selected to be in a range corresponding to a press fitting stroke of associated parts, the torque limiter has a reduced size and the reduction mechanism is small in size and light in weight. [0012] [0013] In one preferred embodiment, the reduction mechanism forming part of the power transmission system comprises a worm reduction mechanism, wherein the first gear is a worm gear and the second gear is a gear wheel. [0013] [0014] At least one of the contact surface of the boss segment and the contact surface of the gear segment may be treated with sulphurizing process such that slipping surfaces are prevented from being worn and the life of the torque limiter is prolonged. [0014] [0015] Desirably, the input shaft is rotatably supported by two bearings, one of which is an angular type bearing. For example, in the event that the input shaft includes a bevel gear, the input shaft is subjected to not only a thrust load but also a radial load. With the use of the angular type bearing, both loads are born by the angular type bearing and the number of bearings can be reduced. [0015] [0016] It is preferred that one end of the boss segment has an annular flange and the gear segment has an annular recess to receive the annular flange of the boss segment. When the gear segment is moved in a thrust direction relative to the gear segment, the gear segment is prevented from moving an excessive amount by the annular flange of the boss segment. Also, the boss segment can be reliably positioned relative to the gear segment during press fitting of the boss segment to the gear segment by fitting the annular flange of the boss segment to the annular recess of the gear segment and an assembling process of the wheel as a unitary structure can be simplified. For example, in the event that the second gear is a bevel gear, positioning of the associated parts may be simplified during press fitting thereof by fitting the annular flange of the boss segment to the annular recess of the gear segment, thus enabling easy assemblage of the bevel gear into a unitary structure. [0016] BRIEF DESCRIPTION OF THE DRAWINGS [0017] Certain preferred embodiments of the present invention will be described in detail below, byway of example only, with reference to the accompanying drawings, in which: [0017] [0018] FIG. 1 is a side view of a snow removing machine having a power transmission system according to a first embodiment of the present invention; [0018] [0019] FIG. 2 is an exploded perspective view of the power transmission shown in FIG. 1; [0019] [0020] FIG. 3 is a cross-sectional view taken vertically of the power transmission system of FIG. 1; [0020] [0021] FIG. 4 is a cross-sectional view taken laterally of the power transmission system of FIG. 1; [0021] [0022] FIG. 5 is a side elevational view of a power tiller having a power transmission system according to a second embodiment of the present invention; [0022] [0023] FIG. 6 is an enlarged cross-section taken along line [0023] 6-6 of FIG. 5; [0024] FIG. 7 is an enlarged cross-sectional view of a part shown by arrow [0024] 7 of FIG. 6; [0025] FIG. 8 is an exploded perspective view of a torque limiter according to the present invention; [0025] [0026] FIGS. 9A to [0026] 9C are views illustrative of the general sequence of assemblage of the reduction mechanism according to the second embodiment of the present invention; and [0027] FIG. 10 is an enlarged cross-sectional view of the reduction mechanism according to the second embodiment of the present invention. [0027] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0028] The following description is merely exemplary in nature and is in no way intended to limit the invention, its application or uses. [0028] [0029] Referring now to FIGS. [0029] 1 to 4, there is shown a power transmission system for use in a self-propelled working machines such as a snow removing machine. [0030] In FIG. 1, the snow removing machine [0030] 10 includes a body frame 11 having a pair of laterally spaced crawlers 12 (only one shown in FIG. 1) supported by the body frame 11. Handles 13 are connected to a rear portion of the frame body 11 and extend upward and rearward. Extreme upward ends of the handles 13 have respective grip portions 14. A prime mover such as an engine 15 is mounted on the frame body 11 for driving the crawlers 12. The engine 15 has an output drive shaft 16 extending toward a front portion of the frame body 11. The drive shaft 16 is connected to an auger 17 and a snow blower 18 to transmit drive power thereto from the engine 15. The auger 17 collects snow, and collected snow is discharged by the snow blower 18 via a shooter 19. Reference numeral 16 a indicates a work-tool holding drive shaft. [0031] An auger transmission unit [0031] 20 of a worm type reduction mechanism is coupled through the work-tool holding drive shaft 16 with the engine 15 to form a power transmission system for transmitting drive power from the engine to the auger 17. [0032] Now, the auger transmission unit [0032] 20, which forms part of the power transmission system, will be described in detail with reference to FIGS. 2 to 4. [0033] In FIG. 2, the auger transmission unit [0033] 20 is shown as a worm type reduction mechanism. The auger transmission unit 20 has a worm shaft 21 that serves as an input shaft. The worm shaft 21 is supported with a pair of bearings 22, 23. A front portion of the worm shaft 21 is formed with a worm gear 24, which serves as a first gear. A disc-shaped gear segment 26 has an outer wheel gear 25 that serves as a second gear meshing with the first gear 24. A cylindrical boss segment 27 is firmly fitted to the gear segment 26 and has an internal female spline 28. An auger drive shaft 30 has an outer male spline 29, that meshes with the female spline 28. The auger drive shaft 30 is rotatably supported with a pair of bearings 31, 32. All the parts discussed above are located in a transmission case 34, and the auger drive shaft 30 is supported by the transmission case 34 by means of the bearings 31, 32. The transmission casing 34 has a front opening, that is closed by a lid 35, thereby forming a gear case 33. [0034] The wheel [0034] 37 of the worm type reduction mechanism includes two parts, namely, the cylindrical boss segment 27 and the gear segment 26. The cylindrical boss segment 27 is press fitted to the gear segment 26, such that the gear segment 26 and the cylindrical boss segment 27 rotates in a unitary motion during normal load but freely rotate relative to one another during an overload. That is, the cylindrical boss segment 27 freely rotates relative to the gear segment 26. In this manner, a torque limiter is formed. More particularly, the torque limiter is formed by a cylindrical contact surface 38 and a cylindrical contact surface 39 of the gear segment 26, with both cylindrical contact surfaces being treated with sulphurizing process, which will be described in detail later. One end of the cylindrical boss segment 27 has an annular flange 41. The gear segment 26 has an annular recess 42, on which the annular flange 41 of the cylindrical boss segment 27 is located. [0035] The worm shaft [0035] 21 is supported by the bearings 22, 23, with the bearing 23 being composed of an angular type bearing. [0036] The sulphurizing process is one of suitable metal surface treatment processes that disperse free radical sulfur into a surface layer of iron material (such as carbon steel, cast iron, cast steel, stainless steel, etc.). Since the free radical sulfur has a high lubricating property, friction is reduced when mating contact surfaces slip each other, resulting in an increased anti-wear property. [0036] [0037] When sulphurizing the surface layer of the metallic parts, a work piece is immersed in a salt bath of a solution of alkali metal salt containing sulfur at the temperature of 190° C. and treated with an anode oxidizing process that forms a dispersed layer of iron sulfide with a thickness of several μm. In order to form the iron sulfide layer on the contact surface [0037] 38 only of the cylindrical boss segment 27, the cylindrical boss segment 27 may be masked (that is, covered with a non-insulation material) at an area except the contact surface. Likewise, the engaging contact surface 42 of the gear segment 26 is formed with the iron sulfide layer in the same manner as discussed above. [0038] Now, the assembling process of the auger transmission [0038] 20 will be described in detail with reference to FIG. 3. [0039] Initially, the cylindrical boss segment [0039] 27 is press fitted to the gear segment 26, thereby unitarily forming a wheel 37. The press fitting operation may be performed at an arbitrary position different from an assembling site of the auger transmission. Particularly, the gear segment 26 is firstly placed on a work piece support of a press machine (such that the annular recess 42 is oriented upward), the cylindrical boss segment 27 is provisionally set to the gear segment 26 from upward and is forced downward by a press punch. This downward movement is continued until the annular flange 41 is completely received in the annular recess 42 of the gear segment 26. The annular flange 41 prevents the gear from excessively moving in a thrust direction relative to the cylindrical boss segment 27. [0040] As best seen from FIG. 3, a bearing [0040] 31 and an oil seal 44 are mounted on the transmission case 34 and the worm shaft 21 is assembled to the transmission case 34 in a provisionally assembling state. Subsequently, the wheel 37 is located in the transmission case 34. The auger drive shaft 30 is then transversely inserted through the wheel 37 in a direction as shown by arrow {circle over (1)} in FIG. 3 such that the male spline 29 of the auger drive shaft 30 meshes with the female spline 28 of the cylindrical boss segment 27. Finally, a bearing 32, a retaining ring (C-shaped ring) 45, an oil seal 46 and a cover cap 47 are mounted to the transmission case 34 in a sequential order. Although one example of the assembling sequence has been described above, essential parts of the auger transmission 20 can be easily assembled in a manner as discussed above. [0041] A support structure of the worm shaft [0041] 21 will now be described in detail with reference to FIG. 4. [0042] Initially, an oil seal [0042] 48 and the angular type bearing 23 are mounted in the transmission case 34, and the worm shaft 21 carrying the sleeve 49 are inserted into the angular type bearing and the oil seal 48 in a direction as shown by arrow {circle over (2)}. In an alternative way, the sleeve 49, the oil seal 48 and the angular type bearing 23 are provisionally mounted on the worm shaft 21 and, subsequently, these parts are assembled in the transmission case 34. The assembled condition of these parts corresponds to the provisionally assembled state of the worm shaft 21 shown in FIG. 3. [0043] In a final stage of assembling, the bearing [0043] 31 is fitted to the lid 35 and a distal end of the worm shaft 21 is fitted to the bearing 31. Thereafter, the lid 35 is mated with the transmission case 34 and these parts are connected with each other by a plurality of bolts 51. Thus, the assembling of the auger transmission 20 is completed. [0044] When assembling the auger transmission [0044] 20, the lid 35 is precisely positioned relative to the transmission case 34 by at least two positioning members 52. Lubricating oil 54 is filled into the transmission case 34 through an oil-level monitoring hole of the lid 35 and, subsequently, the oil-level monitoring hole is closed with a bolt-shaped plug 53. [0045] Operation of the auger transmission [0045] 20 thus assembled will now be described in detail with reference to FIG. 4. [0046] When the worm shaft [0046] 21 that serves as the input shaft is rotated by the prime mover, the worm gear 24 meshing with the wheel gear 25 rotates the wheel 37 and the auger drive shaft 30 rotates. When this occurs, the worm shaft 21 is subjected to a thrust force (thrust load) due to reaction force in the direction {circle over (2)}. The angular type bearing 23 bears the thrust force. If a usual radial bearing is employed, an additional thrust bearing should be provided with a view to bearing the thrust force. Since, however, the angular type bearing 23 bears both the radial load and the thrust load, the number of bearings may be decreased in accordance with the present invention. [0047] A torque limiter [0047] 55 is formed by a boundary between the cylindrical boss 27 and the gear 26 (namely, the contact surfaces 38, 39). [0048] In the event that the auger drive shaft [0048] 30 is subjected to an excessive torque beyond a rating torque when the auger bites foreign matters, the slippage is caused in the torque limiter 55 indicated by a solid circle line. Namely, the gear segment 26 is caused to rotate in an idling condition relative to the cylindrical boss segment 27. Consequently, the auger transmission 20 is prevented from being mechanically damaged that may occur in a power transmission line. [0049] As already discussed above, since the contact surfaces [0049] 38 and 39 of the torque limiter 55 are treated with the suphurizing process, the friction forces acting on the contact surfaces 38 and 39 during the slippage can be reduced and life of the auger transmission 20 can be extended for a sufficiently longer time. [0050] Since, also, the torque limiter [0050] 55 is immersed in the lubricating oil 54, the friction heat caused by slippage of the contact surfaces 38 and 39 is absorbed with the lubricating oil 54. Thus, it is possible to prevent an increase in the temperature of the contact surfaces 38 and 39 (that is, the slipping surfaces) and the life of the wheel 37 can be extremely extended. [0051] A second preferred embodiment of a power transmission system for the working machine according to the present invention will now be described with reference to FIGS. [0051] 5 to 10. In the second preferred embodiment, the working machine is shown as an example of a power tiller. [0052] In FIG. 5, the power tiller [0052] 60 includes a frame body 61 mounting thereon a prime mover such as an engine 62, a power transmission system mounted on the frame body 61 at a position below the engine 62 and including a reduction mechanism 63, a craw drive shaft 64 connected to the reduction mechanism 63, a plurality of tilling craws mounted on the craw drive shaft 64, a handle post 66 extending upward and rearward from a rear portion of the reduction mechanism 63, and a handle 67 connected to an upper end of the handle post 66. The power tiller 60 will be referred to as an ambulatory type self-propelled tiller that is a compromise between a self-propelled tiller which is propelled by an output of the engine 62 serving as the prime mover, and an ambulatory type tiller operated by person. A resistance bar 68 is connected to a rear part of the frame body 61. A clutch lever 69 is supported at an upper end portion of the handle 67. [0053] FIGS. 6 and 7 show the reduction mechanism [0053] 63 and the tilling craws 65 in cross section. [0054] In FIG. 6, the reduction mechanism [0054] 63 includes an input shaft 71 extending downward from an output side of the engine 62, a bearing 72 rotatably supporting a lower end portion of the input shaft 71, a first bevel gear 73 that is formed at a lower distal end of the input shaft 71, a second bevel gear 74 meshing with the first bevel gear 73 and having a diameter larger than that of the first bevel gear 73, an output shaft 75 mounting thereon the second bevel gear 74, a pair of bearings 75 a, 75 b that rotatably support the output shaft 75, and a gear case 76 that accommodates all the parts discussed above. The bearing 72 is an angular type bearing, and the bearing 75 a is also an angular type bearing. [0055] The craw drive shaft [0055] 64 includes a pair of first shafts 81,81 connected to both ends of the output shaft 75, respectively, a pair of second shafts 82,82 connected to the first shafts 81,81 respectively, and a pair of third shafts 83,83 connected to the second shafts 82,82, respectively. Side discs 84 are coupled to respective ends of the third shafts 83, 83, respectively. [0056] FIG. 7 illustrates an enlarged cross sectional view of a section [0056] 7 of FIG. 6, related to the reduction mechanism 63. [0057] In FIG. 7, the second bevel gear [0057] 74 includes a torque limiter 91 that includes an outer gear segment 87 and an inner cylindrical boss segment 88. The inner cylindrical boss segment 88 is press fitted to the outer gear portion 87. [0058] The torque limiter [0058] 91 is formed by press fitting the inner cylindrical boss segment 88 to the outer gear segment 87 under a predetermined press force such that, when a rating torque is transmitted through the torque limiter 91, the outer gear segment 87 and the inner cylindrical boss segment 88 rotates in unitary motion and, when the torque limiter 91 is subjected to an over-loaded condition, that is, when an excessive torque is applied to the torque limiter 91, drive connection is released between the outer gear segment 87 and the inner cylindrical boss segment 88 and the outer gear segment 87 rotates in an idling condition relative to the inner cylindrical boss segment 88. The torque limiter 91 has a lateral dimension L. [0059] The outer gear segment [0059] 87 has an inner bore 87 a, which has an inner peripheral surface forming a contact surface 87 b. An annular recess 87 c is formed at one end of the outer gear portion 87. [0060] The boss segment [0060] 88 has a shaft portion 88 a and an annular flange 88 c formed at a distal end of the shaft portion 88 a. The shaft portion 88 a has an outer cylindrical periphery that forms a contact surface 88 b. The boss segment 88 has an inner bore formed with a female spline 88 d. [0061] The output shaft [0061] 75 has a male spline 75 c, which meshes with the female spline 88 d of the boss segment 88 to provide a drive connection. [0062] The gear case [0062] 76 includes a transmission case 92 and a lid 93 that closes a lower opening of the transmission case 92. [0063] Reference numerals [0063] 75 d and 75 e, 75 e indicate a retaining ring and oil seals, respectively. A reference numeral 92 a indicates a packing located between the transmission case 92 and the lid 93. [0064] FIG. 8 illustrates an exploded perspective view of the torque limiter according to the present invention. The torque limiter [0064] 91 is formed by the contact surface 88 b formed on the gear portion 87 of the second bevel gear 74, and the contact surface 88 b formed on the outer periphery of the boss segment 88. At least one of the contact surface 88 b of the boss segment 88 and the contact surface 87 b of the gear segment 87 may be preferably treated with the sulphurizing process. When assembling the gear segment 87 and the boss segment 88, the boss segment 88 is press fitted to the gear segment 87 in a direction as shown by arrow {circle over (3)} until the annular flange 88 c is fitted to the annular recess 87 c. [0065] Now, the operation of the second preferred embodiment of the power transmission system according to the present invention will be described with reference to FIGS. 9A to [0065] 10. [0066] FIGS. 9A to [0066] 9C show a general sequence of assembling the reduction mechanism. [0067] FIG. 9A: Initially, fixing the bearing [0067] 75 a to the transmission case 92. [0068] FIG. 9B: Next, meshing the second bevel gear [0068] 74 that is preliminarily assembled with the first bevel gear 73, moving the output shaft 75 in a direction as shown by arrow {circle over (4)} such that the male spline 75 c of the output shaft 75 engages with the female spline 88 d of the boss segment 88. [0069] FIG. 9C: In a succeeding step, mounting the bearing [0069] 75 b on the output shaft 75, fitting the retaining ring 75 d in the transmission case 92 and mounting the oil seals 75 e, 75 e to the transmission case 92 from the right and left sides thereof. Finally, the packing 92 a and the lid 93 are secured to the transmission case 92 to close the opening thereof and lubricating oil is poured into the transmission case 92 from an oil supply port (not shown). It will thus be understood that, in accordance with the present invention, essential parts of the reduction mechanism 63 can be assembled in an easy fashion. [0070] Since the torque limiter has the annular recess [0070] 87 c and the annular flange 88 c, the annular flange 88 c can be easily positioned in a fixed place by locating the annular flange 88 c in the annular recess 87 c and the assembling process can be simplified. [0071] Further, the annular flange [0071] 88 c prevents the gear segment 87 from moving in a thrust direction (parallel to the axis of the output shaft 75) for an excessive amount. [0072] Since the bearing [0072] 72 of the input shaft 71 is the angular type bearing, the angular type bearing 72 can bear the radial load and the thrust load acting on the input shaft 71 and, therefore, the number of bearings are minimized. [0073] As shown in FIG. 9B, the torque limiter [0073] 91 is located within the lateral distance L and the lateral dimension of the torque limiter 91 is defined to have a value corresponding to a stroke of the boss segment 88 which is press fitted. Consequently, the torque limiter 91 does not have a laterally, excessively projected portion and the lateral size of the torque limiter 91 can be minimized. Accordingly, the reduction mechanism 63 may have a minimized size. [0074] As shown in FIG. 10, since the torque limiter [0074] 91 is formed by a boundary between the gear segment 87 and the boss segment 88 (that is, between the contact surfaces 87 b, 88 b), the torque limiter 91 has a simplified structure. [0075] It will now be understood that since the torque limiter [0075] 91 is composed of the contact surface 87 b formed on gear segment 87 of the second bevel gear 74 and the contact surface 88 b formed on the boss segment 88, the essential parts of the torque limiter 91 are commonly used as the second bevel gear 74 and the torque limiter 91 has a reduced weight. [0076] In the event that the output shaft [0076] 75 is subjected to an excessive load greater than the rated torque, that is, when the tilling craws incidentally bite foreign matters such as stones or wood pieces, slippage occurs in the torque limiter 91. That is, the gear segment 87 rotates in an idling condition relative to the boss segment 88. As a result, there is no serious damages applied to the power transmission system and, also, the tilling craws are prevented from being ruptured. [0077] As already noted above, at least one of the contact surfaces [0077] 87 b, 88 b are treated with the sulphurizing process. Accordingly, even when slippage occurs between the contact surfaces 87 b, 88 b, the associated parts of the torque limiter 91 can be prevented from undesirable wear and the life of the second bevel gear 74 can be extended for sufficiently prolonged time period. [0078] The prime mover may include an electric motor. The angular type bearing may be either an angular type ball bearing or an angular type needle bearing. [0078] [0079] In addition, a connecting structure between the auger drive shaft and the boss segment may be a spline connection or key connection. [0079] [0080] The working machine of the present invention is not limited to the snow removing machine or the power tiller [0080] 60 and may be applied to an agricultural machine such as a rice-planting machine or a transplantation machine, or an industrial machine. [0081] The torque limiter of the power transmission system is not limited to the gear [0081] 25 and the bevel gear 74. [0082] Obviously, various minor changes and modifications of the present invention are possible in the light of the above teaching. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described. [0082]
权利要求:
Claims (5) [1" id="US-20010009078-A1-CLM-00001] 1. A power transmission system for a working machine wherein drive power is transmitted from a prime mover to a work-tool holding drive shaft via a reduction mechanism for driving work tools mounted on the drive shaft in a working condition thereof, the reduction mechanism comprising: an input shaft; a first gear mounted on the input shaft; an output shaft; a second gear mounted on the output shaft and meshing with the first gear; and a gear case for accommodating the first and second gears; the second gear including a torque limiter composed of a gear portion and a cylindrical boss segment press fitted to the gear portion. [2" id="US-20010009078-A1-CLM-00002] 2. A power transmission system according to claim 1 , wherein the reduction mechanism is a worm type reduction mechanism, the first gear is a worm gear, and the second gear is a wheel. [3" id="US-20010009078-A1-CLM-00003] 3. A power transmission system according to claim 1 , wherein the boss segment and the gear portion, which form the torque limiter, have respective contact surfaces, at least one of which is treated with sulphurizing process. [4" id="US-20010009078-A1-CLM-00004] 4. A power transmission system according to claim 1 , further comprising bearings for rotatably supporting the input shaft, at least one of which is an angular type bearing. [5" id="US-20010009078-A1-CLM-00005] 5. A power transmission system according to claim 1 , wherein the boss segment has at its one end formed with an annular flange and the gear portion is formed with an annular recess to accommodate the annular flange.
类似技术:
公开号 | 公开日 | 专利标题 US6470766B2|2002-10-29|Power transmission system for working machine US20010032447A1|2001-10-25|Implement having engine and transaxle module US9976640B1|2018-05-22|Drive assembly US6401568B1|2002-06-11|Axle driving device having lobed bearings US8607461B2|2013-12-17|Bush cutter US3802289A|1974-04-09|Power transfer device with removably mounted cover MXPA05003192A|2005-09-12|Bi-directional overrunning clutch for a primary drive axle. KR100933555B1|2009-12-23|Manager SE520190C2|2003-06-10|Drive shaft structure of a self-propelled mower JP3949468B2|2007-07-25|Management machine US8365636B2|2013-02-05|Automatic traction enhancement for a transaxle MX2007001178A|2008-10-28|Ribbed cover for drive axle housing. US20030177669A1|2003-09-25|Automated control mechanism for a snow blower discharge shoot FR2867532A1|2005-09-16|TORQUE TRANSMISSION DEVICE US7059215B1|2006-06-13|Rear assembly tandem axle differential carrier US6354414B1|2002-03-12|Clutch mechanism US20040182075A1|2004-09-23|Hydrostatic transmission having a hydraulic disconnect US9145053B2|2015-09-29|Power take-off clutch assembly US4794708A|1989-01-03|Trenching machine boom assembly DE69734900T2|2006-07-13|Auxiliary drive for bicycles US6679778B2|2004-01-20|Torque limiter for wheel driving force US3360065A|1967-12-26|Power cultivator JP3847410B2|2006-11-22|Wheel for work vehicle KR100620814B1|2006-09-13|Differential gear JP2001271904A|2001-10-05|Power transmission device for snow removing machine
同族专利:
公开号 | 公开日 US6470766B2|2002-10-29| EP1123775A2|2001-08-16| NO20010107D0|2001-01-08| KR100423387B1|2004-03-18| NO20010107L|2001-07-18| CN1309251A|2001-08-22| TW455651B|2001-09-21| EP1123775A3|2002-09-11| ES2267607T3|2007-03-16| CN1183339C|2005-01-05| JP2001271903A|2001-10-05| NO320282B1|2005-11-21| KR20010090711A|2001-10-19| EP1123775B1|2006-07-19|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US20150033892A1|2012-02-27|2015-02-05|Bonfiglioli Riduttori S.P.A.|Gear reducer comprising a worm and a crown-wheel assembly provided with a torque limiter| US9580101B2|2014-07-09|2017-02-28|Jtekt Corporation|Electric power steering system|US2939330A|1959-05-11|1960-06-07|Margetts George Phillip|Machine for rotating signs, displays, etc.| US3321565A|1964-01-03|1967-05-23|Eastman Kodak Co|Method of manufacturing a friction clutch| US3313049A|1964-03-05|1967-04-11|Hahn Inc|Overload limiter for snow blowers| US3406583A|1967-01-30|1968-10-22|Gen Motors Corp|Drive mechanism having overload release means| US4192195A|1975-12-03|1980-03-11|Nippondenso Co., Ltd.|Starter with a shock absorbing arrangement| JPS5615404Y2|1975-12-03|1981-04-10||| JPH0459729B2|1982-03-12|1992-09-24|Matsushita Electric Ind Co Ltd|| JPS58157029U|1982-04-16|1983-10-20||| JPS5934069A|1982-08-17|1984-02-24|Nachi Fujikoshi Corp|Reduction gear| US4813303A|1984-08-31|1989-03-21|Mandreles, Inc.|Power drive speed reducer| JPS62127545A|1985-11-26|1987-06-09|Aisin Seiki Co Ltd|Driving device for power sheet| ES2014016B3|1986-09-24|1990-06-16|Siemens Ag|OPERATING PLACEMENT, ESPECIALLY FOR A WINDOW LIFTING MECHANISM OF A VEHICLE.| JPH02112715A|1988-10-21|1990-04-25|Dainippon Printing Co Ltd|Method for inspecting resist pattern| JPH02112715U|1989-02-22|1990-09-10||| JPH0358323U|1989-10-12|1991-06-06||| JP3104373B2|1992-02-05|2000-10-30|カシオ計算機株式会社|Clock gear slip mechanism| US5834662A|1993-06-19|1998-11-10|Imo-Industrie-Momentenlager Stoll & Russ Gmbh|Arrangement for the rotary actuation of an apparatus on a chassis or foundation| IT239102Y1|1995-03-14|2001-02-19|Holmac Sas|DEVICE FOR SUBJECTING A TREE TO A COMBINED MOVEMENT SIMPLE AND ALTERNATE ROTATION, OF REDUCED AMPLITUDE,| JPH09132190A|1995-11-08|1997-05-20|Suzuki Motor Corp|Reduction gear device of power unit for scooter type vehicle| JP2000120511A|1998-10-16|2000-04-25|Honda Motor Co Ltd|Starter of internal combustion engine|FR2822913B1|2001-04-03|2004-10-01|Commerciale Et D Engineering S|TRANSMISSION DEVICE BETWEEN A PRIMARY SHAFT OUTPUT MOTOR AND LAWN MOWER COMPRISING SUCH A DEVICE| EP1329611B1|2002-01-16|2006-04-19|Honda Giken Kogyo Kabushiki Kaisha|Working machine having front-rotary working unit| US7037203B2|2002-11-14|2006-05-02|Durst Power Transmission Products, A Division Of Regal-Beloit Corporation|Adapter device for adapting a worm gear| US20050009464A1|2003-05-15|2005-01-13|Aruze Corp.|Payment object dispensing machine| DE10327103B4|2003-06-12|2007-12-06|C. Rob. Hammerstein Gmbh & Co. Kg|Reduction gear, in particular for an adjustment of a motor vehicle seat| DE102004046048B3|2004-09-21|2005-12-22|Ims Gear Gmbh|Transmission for adjusting parts of e.g. motor vehicle seat, has one-piece transmission case with bearings for worm screw and worm gear| WO2006118904A1|2005-04-29|2006-11-09|Mtd Products, Inc.|In-line belt driven tiller drive clutch| JP2006336297A|2005-06-02|2006-12-14|Ashimori Ind Co Ltd|Wing door opening/closing device| JP2009024857A|2007-07-24|2009-02-05|Yamaha Motor Co Ltd|Automatic shift control device and saddle-riding type vehicle with the same| US7963344B2|2008-09-03|2011-06-21|Black & Decker Inc.|Tiller with removable battery| US8627897B2|2008-09-03|2014-01-14|Black & Decker Inc.|Tiller housing| US8434563B2|2010-02-26|2013-05-07|Schiller Grounds Care, Inc.|Device for cultivating soil or brushing debris| US8844172B2|2012-04-12|2014-09-30|Mtd Products Inc|Three-stage snow thrower| DE102013104521A1|2013-05-03|2014-11-20|Zf Lenksysteme Gmbh|STEERING GEAR| US9167737B2|2013-05-22|2015-10-27|Carts & Tools Technology, Inc.|Garden implement| JP6042288B2|2013-08-02|2016-12-14|本田技研工業株式会社|Auger type snow blower| CA2969223A1|2014-12-02|2016-06-09|Mtd Products Inc|Vertical tine tiller| CN104878713A|2015-06-17|2015-09-02|朱冬|Integrated quick snow sweeper| KR102138771B1|2015-12-31|2020-07-29|남양넥스모 주식회사|Electrical Steering Apparatus and Method to assemble the same| KR102113013B1|2015-12-31|2020-05-20|남양넥스모 주식회사|Electrical Steering Apparatus and Method to assemble the same|
法律状态:
2001-01-09| AS| Assignment|Owner name: HONDA GIKEN KOGYO KABUSHIKI KAISHA, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OHTA, YOSHITAKA;ISHIKAWA, TOMOAKI;REEL/FRAME:011435/0047 Effective date: 20001220 | 2006-04-07| FPAY| Fee payment|Year of fee payment: 4 | 2010-04-21| FPAY| Fee payment|Year of fee payment: 8 | 2014-06-06| REMI| Maintenance fee reminder mailed| 2014-10-29| LAPS| Lapse for failure to pay maintenance fees| 2014-11-24| STCH| Information on status: patent discontinuation|Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 | 2014-12-16| FP| Expired due to failure to pay maintenance fee|Effective date: 20141029 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 JP2000-008341||2000-01-17|| JP2000008341||2000-01-17|| JP2000-8341||2000-01-17|| JP2000-338964||2000-11-07|| JP2000338964A|JP2001271903A|2000-01-17|2000-11-07|Power transmission device for work machine| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|